TDA Progress Report 42-83

July—September 1985

Error and Erasure Probabilities for Galileo Uplink Code

J. B. Berner
Telecommunications Systems Section

R. J. McEliece
California Institute of Technology

E. C. Posner

Office of Telecommunications and Data Acquisition

The Galileo uplink Frame Erasure probability and Undetected Frame Error prob-
ability are derived. The performance meets desired specifications under normal opera-
tions. The Galileo command system will work well even in an emergency condition,
where the bit error rate into the command decoder is 1.00 X 1073 (although Galileo’s
command threshold error rate is 1.00 X 1075), '

|. Introduction

Galileo has a requirement for an undetected error rate for
the End-to-End Command System of less than one undetected
command error in 1 X 10% 48-bitlong frames when the bit
error rate into the CDU is 1 X 1075 (Ref. 1). This translates
into a bit error rate of 2.08 X 1078, While Galileo does not
have any requirements on frame erasure rates, the draft
Consultative Committee For Space Data Systems (CCSDS)
command link coding recommendation is to have a 1073 frame
erasure probability rate and a 107° frame undetected error
probability (Ref. 4).

These requirements are achieved with two forms of error
detection/correction coding. All command frames are encoded
with a block code, and messages spanning more than one
frame are protected with an additional parity byte, called
the checksum byte. If, due to the uplink coding, these require-
ments could be met at a higher input error probability, then
the requirements on the signal-to-noise ratio (SNR) could be

relaxed, which would allow more link margin, One purpose of
this article is to analyze the effect that the uplink coding has
on the channel error and erasure probabilities and to discover
if any SNR savings can be found. A second purpose is to
derive command error and erasure rates at the command
threshold for use in making emergency commanding decisions.

Il. The Code

The code that the Galileo uplink channel is using is a
shortened cyclic code with the following generator polynomial
(Ref. 1):

gx) = xT+x0 +x?+1 = +DEE+x+1) (1)

This generator polynomial gives a (63, 56) code. The version
that Galileo uses is shortened to (47, 40) by filling the first
sixteen bits of the longer code with 0’s.

165

The second factor of the polynomial, (x6 +x + 1), is the
generator polynomial for the (63, 57) Hamming code. The
first term, (x + 1), expurgates the code, i.e., it lessens the
number of information bits by one and increases the number
of parity bits by one. Thus, although the code can be thought
of as a shortened BCH code (Ref. 1), the more useful way of
describing it is as a shortened, expurgated Hamming code.

A by-product of expurgating the code is that all codewords
are even weight. This fact will be used later in determining
the code’s error properties.

There are several ways of viewing the code. The two most
useful both use the parity check matrix, H. The first way
looks at the Hamming code parity check matrix and the
second way looks at the cyclic properties of the unshortened
code. Both ways will be used to demonstrate various proper-
ties and to obtain results.

It can be shown (Ref. 2) that the parity check matrix of the
unshortened, expurgated code is:

@)

where H is the parity check matrix of the (63, 57) Hamming
code. Also, here the Hamming code is a linear code, of the
form

H=[BI_,] (3)

where I is the (n - k) X (n - k) identity matrix and B isa
(n - k) X k matrix. Then, shortening H by ¢ gives the following:

H' = [BI] 4)

where B, is B minus the first # columns (Ref. 2). This result
is easy to justify, since shortening a code is just replacing the
first ¢ information bits in the long code with 0’s (and not
sending these 0’s), which zeros out the first # columns of the
parity check matrix. '

So the first goal is to get the shortened code into the form
of Eq. (4). We do this by looking at the code in the second
way, this time as a cyclic code.

The parity check matrix of a cyclic Hamming code can be
written as:

H = [d°4d',...,d?] (5)

166

where the row vector [0100000] is equal to the primitive
element @, which is a zero of the polynomial x6 + x + 1
(Ref. 3). The Ith column of H is equal to g(a?). Since the
unshortened code is cyclic, we can rotate the matrix and
get:

H=1[d,d% .. .,8% 4, . . .,¢° 6)

H” = [a23>--‘;d627a09'--sa6] (7)

Thus, we can generate the necessary parity check matrix from
the Galois field elements ai. Note that the two parity check
matrices H' and H' are equivalent under row reduction
operations.

lll. Error Properties of the Code

Let us look at the code’s parity check matrix H' (Eq. [2])
and analyze the error properties. The code will correct one
error and detect two errors when used as an error correcting
code; it will detect three errors when operating as an error
detecting code.

The received code word, Y, is equal to the transmitted
codeword, X, plus the error pattern, Z. The syndrome of the
received codeword is equal to the parity check matrix, H',
times the transpose of the received codeword. By definition
of the parity check matrix, the syndrome of an unaltered
codeword is the all O vector. Thus (Ref. 2),

Syndrome = H' YT

H XT+2z7)

H XT+H ZT

HZT

So, we are only interested in the error patterns; the trans-
mitted codeword does not affect the error properties. So
from here on, for ease of calculation, we will assume that the
all zero codeword is sent.

There are two distinct flavors of error patterns: odd weight
and even weight, where weight is defined as the number of
1’s in the codeword or error pattern. For more than two
errors and the parity check matrix H', the following is true:

Even Weight Error Pattern:

~

OO OO OOOoOCT
~

ozt =

v
Ox X X R X XD

where x is either a 0 or a 1,Z7 is the transpose of the received
codeword, and (a) and (b) are the only possible even weight
error pattern syndromes.

The possible syndrome values for the Hamming code are
the columns of the parity check matrix and the all O vector
(the syndrome of a codeword) (Ref.2). Since the parity
check matrix H' has all 1°s in its last row, the only even
weight error patterns that will escape detection are the ones
that are codewords. Thus, the code will detect error patterns
with syndromes of pattern (a) and will not detect error pat-
terns with syndromes of pattern (b).

Odd Weight Error Pattern:

© (@

R T2 T s T - R
— OO0 OO OO0

If an odd weight error pattern occurs, the above syndromes
are the only possible. The code will detect error patterns with
syndromes of pattern (d), since the parity check matrix has
no columns of this form, and will not detect error patterns
with syndromes of pattern (c), unless the code is shortened.
If the code is shortened, error patterns with syndromes equal
to the zeroed out parity check matrix columns will be
detected.

So, to determine the error statistics (how many detected
and how many not detected for weight I), we must take a
different approach for the even and odd weight errors. For
the even weight errors, all we need is the weight enumerator
(the number of words of weight 7 for all /) of the code; for
the odd weight errors, we will have to do more work.

A. Even Weight Errors

There are 240 possible code words; thus, counting the
weights of the codewords borders on the impossible. How-
ever, using the dual code, the weight enumerator of the
code can easily be found.

The dual code of a code is the code produced when using
the parity check matrix as the generating matrix. This gives a
code with 27 = 128 codewords, easily countable with a com-
puter. Then one can use the MacWilliams Identities (Ref. 2)
to get the weight enumerator of the code from the weight
enumerator of the dual code. The weight enumerator then
gives the number of undetectable errors of weight /. Subtract
the undetectable errors from the total number of errors of
weight 7, (}‘7), and we have the number of detectable even
weight errors. The work is thus half done.

B. Odd Weight Errors

In the Galileo uplink, the code is used in two modes, error-
detect (ED) and error-detect-and-correct (EDC). In error-
detect mode, the code is used as an error detecting code; it
does not try to correct the errors. This allows the code to
detect all error patterns of weight three or less. In error-detect-
and-correct mode, which is used only on data frames, the code
is used as an error correcting code; thus, it can correct all one-
error patterns and detect all two-error patterns.

In the error-detect mode, only even weight errors with the
all 0 syndrome (patterns that are codewords) escape detec-
tion. Since the code has no odd weight codewords, if the code
is operated in error detect mode, there are no undetectable
odd weight errors.

However, if the code is operated in error-detect-and-correct
mode, the situation is very different. The code will make an
error if the error pattern causes a syndrome that is a column in
the parity check matrix, i.e., the code assumes a single error
has been made. When the code assumes a single error has been
made, it will try to correct the error. The correction attempt
changes one bit in the error pattern; this new bit may cancel
out one error bit or it just adds one error bit. Thus, to generate
an error pattern of weight 2K + 1, there are 2K + 2 ways of
canceling a bit of a codeword of weight 2K + 2 and there are
47 - 2K ways of adding a bit to a codeword of weight 2K.
So, the formula for the undetectable errors of weight 2K + 1
is:

U= (47—2K)><,42K+(2K+2)><A2K+2 ®
where A4, is the number of codewords of weight i.

167

Once again, the number of detectable errors is the number
of error patterns of weight 7 minus the number of undetect-
able errors.

The weight enumerator, the number of detectable and
undetectable errors, and the details of the calculations are
given in Appendix A.

The next task is to compute for a given input (to the code)
symbol error probability, p, the output frame error and era-

sure probabilities. This is straightforward:

For the error-detect-and-correct mode,

L, 47~
Po,=2.pra-pn 9)
i=2
47 _
Perase = Z pi @ ‘p)47_l Di (10)
=2

where U, and D; are the error-detect-and-correct mode unde-
tectable and detectable errors of weight , respectively.

For the error-detect mode,

47
Ppo =0, P L-0)*U, (11)
i=1
47
= i 47~ y!
Perror - E p (1 _p) Di (12)

=1

where U} and Dj are the error-detect mode undetected and
detected errors of weight i, respectively, as described above.

For an input symbol error of 1.00 X 1075, the output
probabilities are as follows. For error-detect-and-correct,

- 10-11
ror = 1170 X 10
— —7
Perase = 1.081 X 10
For error-detect,
- -17
Pem)r = 2926X 10
= 4,699 X 107

erase

Figures 1 and 2 are plots of the error and erasure probabili-
ties versus the input channel error probability for the error-

168

detect-and-correct mode (Fig. 1) and the error-detect mode
(Fig. 2). We see that the error-detect-and-correct mode pro-
vides error rates of 10~5 to 10714 for p = 1073 to 1079,
while the error-detect mode provides error rates of 107° to
102! for the same range of p.

IV. The Command Frame

A Galileo command frame is 48 bits long. It is equal to the
47-bit codeword, with a 0 fill bit appended to the end to
make the frame length be a multiple of eight bits. The frame
format (Ref. 1) is shown in Fig. 3.

There are two types of command frames, Single Frames and
Multiple Frames (Ref. 1):

(1) Single Frame — A single command frame, decoded in
error-detect mode.

(2) Multiple Frames — A header frame, called the Block
Command frame, which is decoded in error-detect
(ED) mode, followed by 1 to 31 Data frames, decoded
in error-detect-and-correct (EDC) mode. The last
information byte of the last data frame is the check-
sum byte, which is the result of exclusive-ORing all
the previous information bytes. After decoding the
data frames, the parity bits are discarded and the
information bytes are exclusive-ORed. If the result is
nonzero, an erasure is declared.

Thus, there will be two sets of error and erasure probabilities,
one for the Single Frames and one for the Multiple Frames.

A. Single Frames

The Single Frame is just a codeword decoded in the error-
detect mode. The resulting error and erasure probabilities are
shown in Fig. 2. For an input symbol error probability of
1.00 X 1075, the Single Frame probabilities are:

P 2926 X 10717

error

4,699 X 1074

erase

From Fig. 2, we see that the coding provides error rates that
are at least 1078 below the erasure rates.

B. Multiple Frames

Before finding the required probabilities, we must under-
stand how the overall decoding system (Hamming Code
decoder and checksum byte) works.

The Block Command frame is decoded. If errors are de-
tected, processing of the Multiple Frame stops and an erasure

is declared. If no errors are detected, the Data frames are
decoded. If an uncorrectable error is detected, processing of
the Multiple Frame stops and an erasure is declared. If all
frames are decoded without an erasure, the data bytes (the
40 information bits per Data frame) are exclusive-ORed, and
if the result is nonzero, the processing is stopped and an
erasure is declared. The last data byte of the last Data frame is
called the checksum byte, since this byte is appended onto
the data stream to make the exclusive-ORing of the data
bytes be zero (Ref. 1).

Since the code and checksum are linear, any frame can be
used for the analysis. So we will assume that the all zero frame
is sent; thus, a 1 denotes an error.

Assume that the codeword has passed through the decoder.
We now drop the 7 parity bits and only consider the 40 infor-
mation bits (five information bytes). If we break each byte
into its 8 bits and look at each bit position (or slot) in the
byte, two things are obvious:

(1) If there is an odd number of 1’s in any slot, the
exclusive-ORing process will result in a 1 being in that
slot; thus, an erasure will be declared.

(2) If there is an even number of 1’s in each slot, the
exclusive-ORing process will result in a O being in that
slot; so, no-error will be detected.

Thus, for an error pattern to escape detection, there must be
an even number of 1’s in each slot.

Now, the statistics of the shortened, expurgated Hamming
code are such that if the decoder makes an error, it outputs
even weight error patterns of weight four or more. And, as
was shown above, if there is an odd number of channel errors
that the decoder cannot correct or detect, the decoder outputs
either one less error or one more error. Thus, the minimum
number of channel errors at the input to the decoder to cause
an error that is undetectable (or uncorrectable) by the decoder
is three. So the probability of an error that is undetectable
by the checksum is proportional to p3, for small p.

Since we have multiple data frames, the question is, do we
worry about multiple frame errors, or do we just look at a
single frame in error? The probability of a multiple undetected
frame error would be equal to C X p® + O() (since p3 is the
minimum for a single frame), where C is a constant. Since p
is less than 103, the probability of a double frame error is,
at the least, 10~9 less than the probability of a single frame
error. Thus, we can ignore all multiple data frame errors and
concentrate on undetected single data frame errors. And,
since we are dealing with a low p, the number of undetectable
combinations we have to look at is small.

The undetectable error patterns are those with an even
number of 1’s in each slot. This only occurs in error patterns
with an even number of 1’s in the information bits.

There are 80 possible undetectable weight 2 information-bit
error patterns. The corresponding codeword weights are (see
Appendix B for the derivation):

37 weight 4
32 weight 6
11 weight 8

There are 2840 possible undetectable weight 4 information-bit
error patterns. The corresponding codeword weights are:

37 weight 4
892 weight 6
1591 weight 8

320 weight 10

There are 58800 possible undetectable weight 6 information
bit error patterns. The corresponding codeword weights are:

924 weight 6

19253 weight 8
32244 weight 10
6379 weight 12

Before we begin, some symbols that we will use:

PISD = Probability that the decoder declares an erasure
in ED mode

PEDC = Probability that the decoder declares an erasure

in EDC mode.
PED = Probability that the decoder makes an error in
ED mode
PgDC = Probability that the decoder makes an error in

EDC mode

169

With the above numbers in hand, and with the knowledge that
the code converts odd weight error patterns into even weight
patterns, we can calculate the probability that one frame will

rase Prob (erasure in Block Command frame)

+ Prob (erasure in one of the # data frames)

have an error pattern that is undetectable by the checksum + Prob (checksum declares erasure)

(called P,), given that the decoder made an error.

"
]

; (sum of (the number of patterns of weight
{ that are undetectable)

w P'X 0 =p))

_ (45X0+4X (37+37) X p3 x (1 -p)*

ED ED EDC
erase PR +(1_PR)XPR

1 (16)
X Z (1 _PIEDDC)i—l

=1

hn EDC _ pEDCyn~1
+ (1) x B, X (1 - PEPC - pEPCY"

P ED EDC
u PEDC X(1-PRo)X P
And, the error probability (again assuming one undetectable
, B7+3DXp* X (1 -p)* (13) error):
pEDC
B P = Prob in Block C df
rror rob (error in Block Command frame)
. (43X (37+37)+6 X (32 +892 +924)) + Prob (undetectable error in data frame)
pEDC
£ - pED EDC _ pEDC
error PE X —PE _PR) an
X p% X (1 -p)*? ED _pED n
) +(1-PEP -PED)X () X,
6 EDCyn-
+O(I;C) X(l _PEDC_PR C)n IXPEDC
Py
The resulting probabilities are plotted in Figs. 4, 5, and 6, for
n=75,10, and 31. For a channe] error probability of p = 1075,
the results are:
p = 2960° (1 -p)** +74p* (1 - p)*° +14270p° (1 - p)*?)
u pEDC Forn=35,
E
= -12
(14) P .= 148X10
P .= 470X107%
And the probability of a frame having a detectable error by
the checksum (P,), given that the decoder made an error, is: Forn =10,
= 296 X 10712
- error
P, =1-P, (15) D
e = 471X 10
And we will assume that we have » data frames, where n is For 7 = 31
between 1 and 31. ’
= v 10-12
ror = 217 X 10
Now let’s calculate the erasure probability of the system, 4
= 473 X 107

remembering that an erasure stops the processing:

170

erase

V. Examining the Results

Let us assume the CCSDS requirements (1073 frame erasure
probability and 10~° frame undetected error probability). At
least for now, we will assume’ these requirements for the
Multiple Frame. So, using Figs. 2, 4, and 5, we get the follow-
ing undetected error probabilities at an erasure probability
of 1073:

Forn=35,
- -11
Poor = 1.00 X 10
Forn =10,
= ~11
ror = 200 X 10
Forn =31,
P =800X 10711

error

These values occur at a channel error probability of 2.00 X
1075 or 1.00 X 10~%79, which gives an E, /N, improvement of
0.33 dB over the £, /N, required for a 1.00 X 10~5 channel
error probability.

Now, let us consider the # = 31 case (this has the highest
error probability). The error probability is equal to 1.00 X
10-10.09691 This means we have one frame in error for every
101009691 frames. At 32 bits per second, and 48 bits per
frame, that means that it will take 594 years for an error to
occur. Or, to put it another way, we could have started trans-
mitting commands continuously when Galileo was alive in
the mid 1600’s and still would not expect an error until
sometime ‘in the twenty-third century (Jim Taylor, private
communication).

V1. Command Threshold

We now want to look at what happens at the command
threshold. The command threshold is assumed to be the point
where the input symbol error rate, p,is 1.00 X 1073,

In Section IV, we made an assumption that since the
symbol error rate would be less than 1073, we only had to
worry about one frame in error when we have a multiple
frame command. Since we are at p = 1073, we should look
at this again:

For the probability of erasure, P, , the only term affected
is Prob (checksum declares erasure). This term is equal to the
sum of Prob (checksum declares erasure | number of frame

errors = §) X Prob (number of frame errors = 7). For each i,
the summed terms are bounded by:

(1) x ey

At p = 1073, PEPC = 1.1 X 1075, The later terms in the
summation are thus insignificant when compared to the first
term (7 equals 1). Thus the equation for P, .. (Eq. [16]) holds
atp =103,

The probability of error is even easier. The probability, P, ,
of an undetectable error, given that a frame error has occurred,
is the summation over i of D X (p3)!, where i is the number of
frames that have errors and D is a constant that depends on
i. With p = 1073, only the first term (i equals 1) is significant.
So the equation for £, . (Eq. [17]) holds.

The equations give the following numbers for p = 1073

Single Frame:

P o= 46X1072
Py = 28X107°
Multiple Frame:

n=5, P . =50X107?
ror = 13X 1078
n=10, P = 55X 1072
Pooe = 27X 107
n=31, P = 76X107
mor = 8:1 X 107

So, even in the worst case (n = 31), in an emergency, only
7.6% of the frames would get erased and more importantly,
those that get through the decoder have an error probability
of 8.1 X 107%. This means that it is safe to blind command
(the sending of commands without any hope of the space-
craft verifying them) Galileo in case of a spacecraft emergency.

VII. Summary

The Galileo uplink frame erasure and undetectable frame
error probabilities have been derived. It has also been shown
that the Expurgated Hamming code with checksum byte
gives better than required error protection for a given
erasure probability.

171

10790

]0—6 -

PROBABILITY OF FRAME ERROR/ERASURE
rd

ERASURE
== —==— ERROR

10714 { |

1073 1074 1075
PROBABILITY OF CHANNEL ERROR

Fig. 1. Probabilities for error correct mode

172

PROBABILITY OF FRAME ERROR/ERASURE

1078

~\
AN
L\ -
N\
L \ _
N\
[\ -
AN
| AN _
N\
\ -
B N
AN
- \ -
\
- \ |
AN
B \ _
N\
N\
- \ -1
B ERASURE]
— — — ERROR
| N
N
! |
1073 1074 1070 1078

PROBABILITY OF CHANNEL ERROR

Fig. 2. Probabilities for error detect mode

PROBABILITY OF SYSTEM ERROR/ERASURE

1075

1076

107

1078

10'”

]0-12

10718

1014

10715

Fig. 4. Probabilities for multiple frames where n = 5

INFORMATION BITS
(5 bytes)

PARITY

40 bits

Fig. 3. Galileo command frame format

7 bits

1 bit

N |
N\
\
LN _
\
\
\
— \ -
\
AN
n \ _
f— \ ——
\
— \ —
N\
n N _
ERASURE
o= —— ERROR \
L =
| I N
1078 107 107° 1076

PROBABILITY OF CHANNEL ERROR

PROBABILITY OF SYSTEM ERROR/ERASURE

7

1078 N\

10

9 \

10 \

10

10

10

10

10

10

10| N\

11 \

12 N\

-13]-

ERASURE
== == ERROR

~14].

-15 ! l

1073 1074 107
PROBABILITY OF CHANNEL ERROR

Fig. 5. Probabilities for multiple frames where n = 10

173

107! ' '
10-2 — —
1073~ J
1074 L .
W
1075 N |
\\
g 0t N\ -
3 \
& AN
‘g‘ 107 | \ ﬂ
= AN
B 08 \ -
& \
6 \\
E 10771 \\ .
: \
o 10l .
£ 10 N
\\ _j
S
10 \ '
\\
10712 \ _
\\
o8 -
ERASURE \\
o~ ERROR
104) N
1071 1 L
1073 o4 107 1078

PROBABILITY OF CHANNEL ERROR

Fig. 6. Prohabilities for multiple frames where n = 31

174

Appendix A
Code Statistics

The goal is to find, for each error pattern weight, the num-
ber of detectable and undetectable error patterns. To do this,
we must first find the weight enumerator of the code.

The weight enumerator is found via the dual code of the
code. The dual code is the code created by using the parity
check matrix of our code as a generator matrix. This creates a
(47, 7) code, which has only 27 = 128 codewords. The weight
enumerator of this code is easily found by computer by
generating the 128 7-bit sequences, encoding them with the
parity check matrix, and then counting the 1’s in each code-
word. The results of this are in Table A-1.

The next step is to use the MacWilliams identities to calcu-
late the weight enumerator of the code. The MacWilliams
identities state (Ref. 2) that if B(z) is the weight enumerator
of an (n, k) linear code and A (z) is the weight enumerator of
its dual code, then:

n

A@) =27% 3 B (-2 (L+zy"!

=0

(A-1)

In our case, k = 7, n = 47, B(2) is the weight enumerator of
the dual code, and A4 (2) is the weight enumerator of the code.
So, again using a computer, the weight enumerator can be
calculated. The results are shown in Table A-2, Now we can
calculate the number of detectable and undetectable error
patterns of weight i. First, let’s do it for the EDC mode.

As was discussed in Section III, the only undetectable even
weight error patterns are those that are codewords. Thus, for
errors of weight 2i, the number of undetectable and detect-
able patterns are:

Undetectable = A4(2i)

(‘2‘17) - AQ20)

And, as was shown in Section III, the number of odd weight
detectable and undetectable error patterns is:

(A-2)

Detectable = (A-3)

Undetectable = (47 -20) X AQRD+Qi+2) X A(2i +2)

(A-4)
Detectable = (2i4+7 1) - (47 - 20) X A(21)
~QI+2)XAQRIT2) (A-3)

The results are shown in Table A-3.

For the ED mode, the even weight error pattern breakdown
is the same. The difference is in the odd weight error patterns.
Since we are in ED mode, errors that look like single errors
are detected, not corrected. So, there are no undetectable
error patterns of odd weight. These results are in Table A4.

175

Table A-1. Dual code weight enumerator

Table A-3. Error statistics (EDC mode)

Weight Number of Words
0 1
19 3
20 4
21 5
22 23
23 28
24 28
25 23
26 5
27 4
28 3
47 1

Table A-2. Welght enumerator

Weight Number of Words
0 1
2 0
4 2927
6 167017
8 4916447

10 80897478
12 816454377
14 5338125069
16 23488120074
18 71384955784
20 152538959670
22 231779439554
24 251934559006
26 196121173412
28 108956243986
30 42831113394
.32 11743967013
34 2198099208
36 272132459
38 21294613
40 981971
42 24070
44 245
46 1

Weight Detectable Undetectable

1 47 0
2 1081 0
3 4507 11708
4 175438 2927
5 405976 1127963
6 10570556 167017
7 16712226 46179273
8 309541048 4916447
9 361932932 1000716213
10 5097169273 80897478
11 4626474407 12790659210
12 51434946474 816454377
13 37367194284 103309654161
14 336305649726 5338125069
15 199648256088 551968048461
16 1479744489024 23488120074
17 728127949008 2013060926406
18 4497263169906 71384955784
19 1852256859654 5120942911136
20 9609940719436 152538959670
21 3334060006144 9217699581278
22 14602118254672 231779439554
23 4282886436556 11840915404994
24 15871867282544 251934559006
25 13940252328376 10893645365850
26 12355638414010 196121173412
27 2593160205846 7169319473260
28 6864243526804 108956243986
29 1213546088136 3355102037554
30 12698357762020 42831113394
31 399296736984 1103935872114
32 739872337536 11743967013
33 90748896528 250894878267
34 138478749237 2198099208
35 13879342623 38372058228
36 17145001158 272132459
37 1375414408 3802652343
38 1341354532 21294613
39 83527138 230930357
40 61909528 981971
41 2852836 7884737
42 1509869 24070
43 47235 131130
44 15970 245
45 300 781
46 46 1
47 0 1

176

Table A-4. Error statistics (ED mode)

Weight Detectable Undetectable

1 47 0
2 1081 0
3 16215 0
4 175438 2927
5 1533939 0
6 10570556 167017
7 62891499 0
8 309541048 4916447
9 1362649145 0
10 5097169273 80897478
11 17417133617 0
12 51434946474 816454377
13 140676848445 0
14 336305649726 5338125069
15 751616304549 0
16 1479744489024 23488120074
17 2741188875414 0
18 4497263169906 71384955784
19 6973199770790 0
20 9609940719436 152538959670
21 12551759587422 0
22 14602118254672 231779439554
23 16123801841550 0
24 15871867282544 251934559006
25 14833897694226 0
26 12355638414010 196121173412
27 9762479679106 0
28 6864243526804 108956243986
29 4568648125690 0
30 2698357762020 42831113394
31 1503232609098 0
32 739872337536 11743967013
33 341643774795 0
34 138478749237 2198099208
35 52251400851 0
36 17145001158 272132459
37 5178066751 0
38 1341354532 21294613
39 314457495 0
40 61909528 981971
41 10737573 0
42 1509869 24070
43 178365 0
44 15970 245
45 1081 0
46 46 1
47 1 0

177

Appendix B

Undetectable Information-Bit Error Patterns

The only way for errors to escape detection by the check-
sum byte is to have an even number of errors in each bit slot,
Since there are 5 information bytes per Data frame, there are
5 different bits per bit slot. We are only interested in the
undetectable patterns with 2, 4, and 6 information bits in
error.

I. Two Information Bit Errors

The only way to get an undetectable error pattern with two
information bits in error is ’r.o have both bits in the same slot.
That means that there are () ways to do this in each slot and
that there are (1) slots to do it in. So:

G)(1)= 0

There are 80 possible two information-bit error patterns that
will escape detection. To find the codeword weights, a com-
puter was used; each pattern was generated, encoded, and then
“weighed” (the number of 1°s counted). The results are:

37 weight 4
32 weight 6
11 weight 8

II. Four Information Bit Errors

There are two types of four information-bit error patterns
that escape detection. The first is all four errors in one slot.
There are () ways per slot to do this and (7) slots to do it
in, Secondly, there could be two sets of slots with two errors
in each. There are (2) ways per slot and (2) slots to do it in.
Thus:

178

(DX G GIx(GIx(3) - 230

So, there are 2840 possible four information bit patterns.
Again a computer was used to generate the codeword weights,
using the same method as before. The results are:

37 weight 4
892 weight 6
1591 weight 8

320 weight 10

IIl. Six Information Bit Errors

There are two types of six information-bit error patterns
that escape detection. The first has three slots w1th two errors
in each slot. There are (2) ways per slot and (3) slots to do it
in. The second way has four errors in one slot and two errors
in another. There are () ways to do it in the four error slot
and (2) ways to do it in the two error slot; there are 8 X 7
slots to do it in. So:

X () ()l x () (o)) = seso

Thus, there are 58800 undetectable six information-bit
error patterns. Using the same methods as above, the code-
word weights were calculated. The results are:

924 weight 6
19253
32244 weight 10

6379

weight 8

weight 12

References

. Project Galileo Orbiter Functional Requirements Book, Vol. I, Document GLL-3-290,
Rev. B, “Command Structure and Assignment” (internal document), Jet Propulsion
Laboratory, Pasadena, California.

. McEliece, Robert J., The Theory of Information and Coding, Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1977,

. Blahut, Richard E., Theory and Practice of Error Control Codes, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1983.

. Telecommand, Part-1: Channel Service, CCSDS Draft Recommendation, Red Book,

Issue-1, Consultative Committee for Space Data Systems, Washington, D.C., April
1985,

179

